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Hydrodynamic propulsion 
by large amplitude oscillation of an airfoil 

with chordwise flexibility 
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Department of Aeronautical Engineering, Technion-Israel Institute of Technology, Haifa 
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The hydrodynamic forces due to the motion of a flexible foil in a large amplitude curved 
path in an inviscid incompressible flow are analysed. A parametric study of large 
amplitude oscillatory propulsion, with special emphasis on the effect of chordwise 
flexibility of the fin, is presented. This flexibility was found to increase the propulsive 
efficiency by up to 20 yo while causing small decreases in the overall thrust, compared 
with similar motion with rigid foils. 

1. Introduction 
Aquatic propulsion by means of oscillating thin foils has been the focus of con- 

siderable interest in the last two decades. This is due to the relatively high efficiency 
obtainable by such systems and other advantages like scaling possibilities (limited in 
propellers owing to the tip-speed problem) and low-noise characteristics. 

The high efficiency obtainable by such propulsion systems has been pointed out in 
various studies, including Lighthill (1960), Wu (1961), Bonthron & Fejer (1962) and 
Siekmann (1962, 1963). Experimental proof was presented by Webb (1975), who 
estimated the propulsive efficiency of fish swimming by this technique to be around 
80 yo. Scherer (1968) built an undulating propulsor which included a rigid plate of 
aspect ratio 3. His results show that the efficiency and thrust coefficient of his pro- 
pulsor are competitive with those of classical rotating propellers. 

The first mathematical models analysing the oscillatory propulsion of fishes were 
based on small amplitude potential theory (e.g. Lighthill 1960; Wu 1961). However, 
it is clear from the work of Scherer (1968) and Chopra (1 976) as well as from observa- 
tions of aquatic creatures that in order to achieve practical thrust levels the oscillation 
amplitude of the propulsor foil must be large compared with its chord. 

Various possible mathematical methods for dealing with large amplitude motion of 
high aspect ratio foils have been put forward. Thus the arbitrary potential motion of 
a thick two-dimensional airfoil was treated by the doublet lattice method in Giesing’s 
(1968) work. James (1973) analysed circular and harmonic motions of an airfoil by 
means of the acceleration potential, while Chopra (1976) solved the large amplitude 
harmonic oscillation case with the aid of the impulse approach. All of the studies 
mentioned dealt with rigid foils. In  many cases where oscillatory propulsion is used, 
however (e.g. fish lunate tails, swim fins), the fin chord is flexible and the oscillatory 
motion has an amplitude of the order of magnitude of the fin chord. Therefore the pre- 
sent study develops a general method, within the limitations of two-dimensional theory, 
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for solving the motion of flexible surfaces moving in curved paths (limited to angles of 
attack such that no flow separation occurs and to non-self-intersecting trajectories). 

In  the present work only passive flexibility is included. The method proposed can 
include foil shape changes by design, and this is in fact the basis of a further study being 
carried out currently where optimal foil curvatures as a function of time and trajectory 
are to be obtained. 

2. General theory of the motion of a flexible surface 
Consider a thin foil with a flexible chord of constant length c which varies its shape 

passively owing to the hydrodynamical forces acting on it. The propulsor is taken to 
move in water a t  high Reynolds number so that the analysis can be based on incom- 
pressible potential theory (Lighthill 1971; James 1973; Chopra 1976). A given point P 
on the foil (at the leading edge in the present study) is forced to follow a predetermined 
path S(S,., !Ss.) (figure I ) .  The trajectory S is such that the flow disturbance caused by 
the foil stays small and no point of the foil traverses the wake. In addition the displace- 
ment of the foil h(z, t ) ,  measured in the orthogonal (z, z )  co-ordinate system, where the 
x direction is tangential to the path, has to be small (h(x, t ) / c  < 1). These two state- 
ments actually limit the chordwise downwash velocity w(x ,  t )  such that w(x, t ) /  V ( t )  < I ,  
where V ( t )  is the velocity of the point P, i.e. the local angle of attack of each point 
along the foil is small. With the above definition the continuity equation in a stationary 
inertial co-ordinate system (x*, z * )  (figure 1) is 

V2$* = 0, (1) 

where $* is the time-dependent velocity potential due to the foil motion and its wake. 
This potential can be separated into the plate disturbance potential $$ and the wake 
potential &, assumed to consist of distributed vortices situated on a deforming sheet 

(2) 
(see figure 1 ) : 

The boundary conditions for (1) are as follows. 

$(x*, z*, t*) = $h; + $2 sz $h*. 

(a) There is no flow through the plate surface z* = h(x*, t * ) :  

a$* ah(z*, t " )  &(a*, t*) 
+ at* * az* onfoi l  ax* ax* 

Yl =- (3) 

( b )  The disturbance decays far from the plate: 

V$* --f 0 as 1z*1, Iy*l, Iz*I -fa. (4) 

The instantaneous strength of the vortex sheet leaving the foil's trailing edge can be 
calculated by Kelvin's theorem: 

d r  dr, dr, - = -+- = 0 
dt dt dt  

(at all t ) ,  (5) 

where I?, and ru. are the foil and wake circulations, respectively. 

Bernoulli's equation : 
The instantaneous pressure P a t  each point on the airfoil is calculated from 

P,-P 1 a$* 2 a$* 2 -- ---[(-) +(2*)]+%. 
P 2 ax* 
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FIGURE 1. Schematic description of model. 

The solution of the boundary-value problem (1)-(4) is very complicated owing to the 
foil surface condition (3) .  This difficulty is overcome by transforming the problem, 
which has been stated in the inertial frame of reference (x*, z*) ,  into a system (x, z), 
where the boundary condition on the foil surface is more easily stated. This trans- 
formation is 

(7) 

where 8 is the inclination of the (x, z) co-ordinate system relative to  the (x*, z * )  frame 
and ( L S ~ , , ~ ~ , )  are the path components (see figure 1). The transformed continuity 

(8) 
equation is 

(9) 

1 x = cos [ O ( t ) ]  [x* - &.(t)] +sin [ O ( t ) ]  [z* - 8,,(t)], 
z = -sin [O(t)] [x* - 8,4t)] + cos [19(t)]  [z* - ~'&(t)],  

t = t*, 

V2$ = 0, 

$(x, 2, t )  = $0 + 9, 5 $. 
The potential $ is defined only in the inertial (x*,z*) system because definition of a 
non-rotational velocity potential in the rotating frame (x, z )  is impossible. Therefore 
the derivatives a#/ax and a$/& are the velocities parallel to  the x and z directions as 
measured in the (x*, z * )  system. 

The transformed boundary conditions are 

where w is the time-dependent angular velocity of the (2, z) frame, 

1 2  - [zo+ V(t)]--xw-+- #- -  a '1 2[(ax)2+(g)2] "-'-i P ax az at 
a 
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FIUURE 2. Co-ordinate system for calculations of foil bending. 

Since the flow disturbances are small compared with the main flow, i.e. @/ax, 
a#/& < V ( t ) ,  terms including these derivatives can be neglected. 

The above representation of the boundary-value problem has the advantage that 
the boundary condition on the foil surface [equation (lo)] is simpler than (3).  This 
boundary condition is now given in terms of an equivalent instantaneous chordwise 
downwash W ( x ,  t )  that replaces the Va term in steady airfoil theory. 

However, in general unsteady motion, the wake potential #w and the chordwise 
elastic deformation are not known, so that an iterative solution has to be applied. 

3. Calculation of the chordwise elastic deformation 
I n  the present analysis the foil chord is deformed by hydrodynamic pressures and 

elastic and inertial forces, It is assumed that the foil is clamped a t  its leading edge and 
that its elastic behaviour can be estimated by the cantilever model. The calculations 
are carried out in an orthogonal co-ordinate system ( c , ~ )  with abscissa along the 
instantaneous undeflected foil direction, as shown in figure 2. 

The deformation of the foil 7 due to the forces acting on it is obtained from 

where - P, is the pressure difference on the airfoil, as obtained from the solution for 
the potential field, and E(6)  is the chordwise elasticity factor defined as the product 
of the local moment of inertia and Young’s modulus. The influence of the x component 
of the force on the foil bending is neglected here. The inertial force distribution 
aFa/a6 can be calculated by the present method. However, to enable comparison 
with existing work (Chopra 1976; and others), a massless foil is assumed in the pre- 
sentation of the results. The instantaneous deflexion h(x, t )  of the airfoil produced 
by the varying angle of attack and the chordwise flexibility is written as 

h(x, t )  = - x sin [a(t)] + ~ ( 5 ,  t )  cos [a(t)]. (14) 

The elastic behaviour of the airfoil is found from (13), which is solved as follows. 
First, a deflexion of the plate ri(f, t )  (usually the solution a t  the previous time step) is 
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assumed and the boundary condition on the plate is calculated from (14) and (10). 
The potential $, is then found as stated before, providing the pressure distribution 
along the airfoil. This pressure distribution, when substituted in the right-hand side 
of (13), enables the integration of its left-hand side, resulting in the deflexion of the 
plate qi+l(& t )  due to the various forces. If the assumed deflexion r i  and the calculated 
one ri+, are not identical a correction is made such that 

ri+z = C1%+1+ (1 - Cl) ri7 (15) 

where C, is dependent on the chordwise flexibility (usually C, < 0.2). Convergence of 
the iterative procedure is achieved when qi+l qi ,  which usually requires 3-5 itera- 
tions. C, was selected by trial and error at first. 

4. Calculation of the chordwise pressure distribution 

1966, chap. 17) and its solution at  any instant is as follows: 
The boundary-value problem (8)-( 11)  is well known (see, for example, Karamcheti 

The solution for the vorticity distribution y ( x ,  t )  on the foil is found using the well- 
known transformation (see, for example, Robinson & Laurmann 1956, chap. 2) 

x = gc(l-cOs8,). (19) 

It is assumed that the Kutta condition is valid for the unsteady motions dealt with in 
the present work. Then the vorticity distribution y ( x ,  t )  which satisfies (8)-( 11) after 
substitution of (16)-( 18) is given in terms of el by 

where the time-dependent Fourier coefficients A,, A,, . . . are calculated from (17) and 
found to be 

n (21) 

The pressure distribution about the airfoil is now found from (12). The terms 
including the angular velocity o are symmetric on either side of the foil and do not 
contribute to the lift distribution dL/dx  : 
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The total lift in the (2, z )  system is found by integrating the pressure distribution over 
the foil, neglecting the wake-influenced parallel velocity relative to the foil near its 
surface (a$,/ax -g a$,/az, a$,/at -g a$,/at on the foil): 

L(t) = 2 4 ;  [%+ V(t )  %] ax ax 

Similarly, the moment at the leading edge is 

5. The vortex wake 
In order to deal with more general unsteady motions of the foil, and to enable study 

of wake distortion, a wake model consisting of discrete vortices is constructed (figure 1). 
At a given time step the wake vortices (or g5w) are known from previous time steps, 
except for the latest vortex. The strength of this vortex is calculated from ( 5 ) ,  where 
the sum of the distributed vortices replaces the term r,: 

d r  _ -  d r ,  d(ioYn) = 0, 
dt --+ dt dt 

where y l ,  yz, . . ., yi are the vortices constituting the wake I?,. Thus 

(27) 
A (ioyn) - - -- AP, 

At At ’ 
y .  = 

where the foil circulation Ff is found to be 

The instantaneous bound vortex strength rf is dependent on the influence of the 
wake (including the last vortex) through boundary condition (10). The strength of the 
most recently shed vortex was therefore calculated iteratively by the Newton- 

t The values of #, I? and their derivatives are defined in the inertial frame of reference (z*, z*), 
as the non-inertial system (z, z )  is used mainly to perform the integrations via the transformatiom 
suggested. 
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Raphson method. Convergence within 0.1 yo was obtained within three or four 
iterations. 

Another important feature of the above wake model is that after each time step its 
distortion as a result of the velocity field induced by the foil and its wake may be easily 
calculated. In cases where the foil did not come close to its own wake the influence was 
usually found to be negligible (Katz & Weihs 1978). 

6. Estimation of performance of harmonic oscillatory propulsor 
The mathematical model derived in $$2-5 is used to calculate the performance of a 

flexible, large amplitude oscillating propulsor whose frequency R and amplitude H are 
constant. First the instantaneous forces in the x and x directions are calculated: 

(29) 

(30) 

(31) 

X B ; = - / o ( - & + g ) - d x + q ,  c aL aF ah(x,t) 
ax 

X $ = f : ( z + z ) d x ,  d L  aFa 

XMv = I0 (z+z) xdx. 
d L  aFa 

Here T, is the leading-edge suction force and is found from its definition (Robinson & 
Laurmann 1956, chap. 2) T, = -mpK2, (32) 

where K = lim (x+iz)*u = A,(t)  V(t)c&. (33) 

T, = -npc[A,(t) V( t ) ]2 .  (34) 

5 + ia-0 

Substituting (33) in (32) gives 

Now, if the 'vehicle ' is moving in the - x* direction with speed U, and the propulsor 
is performing a heaving and pitching motion with frequency R, the path parameters 

(35) 
can be written as 

(36) 

a = a,+a,sin(Rt--), (37)t  

(38) 

0 = dB/dt. (39) 

s,, = - U,t, 

S,. = ( H / c )  sin (R t ) ,  

8 =tan-l Ey;;], - - 

The propulsive efficiency qp and the thrust coefficient are defined as 

4J7 ( ( X F ~  cos 8 - ~4 sin 8 )  
7 0  

l;lp = ss,' ((SF, sin 8 + X 4  cos8) 

c, = 2- 1' (ZF, cos 8 - Z$ sin 0) dt, 
PUi7,C7 0 

where 7 is a whole number of periods of oscillation. 

t Notice that a is measured anticlockwise (figures 1 and 2). 
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7. Discussion of results 
Large amplitude rigid propulsor 

The most important feature of oscillatory propulsion is that the thrust grows as the 
amplitude ratio H / c  increases (figure 3). This was pointed out by Chopra (1976), whose 
results are similar to the present ones, although in his model the vortex wake was not 
allowed to deform in the induced velocity field. This leads to the conclusion that the 
vortex wake deformation may be neglected in modestly oscillating motions, 

CT = iStC/U, < 0.3. 

The dashed lines in figure 3 (a)  represent a region where the local chordwise down- 
wash is higher ( w c / V ( t )  amax > l)t than is permitted by the linear theory (separation 

t a,,, was taken to be the maximal angle of attack, just before separation occurs. 
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FIGURE 4. The inffuence of the phase difference q on (a) the efficiency and ( b )  the 
thrust coefficient. U,/c = 10 s-l, H / c  = 3, uo = 5", q = an. 

is expected). This usually occurs after peaks in the sinusoidal motion and can strongly 
affect the calculation of the efficiency, as predicted by Chopra (1976). 

Figure 3 shows the increase in thrust when the frequency is raised. The same 
behaviour is obtained when the maximum angle of attack a,, is increased (e.g. Chopra 
1976). The theoretical effciency is very high, as indicated in figures 3-5. As the path 
curvature rises (i.e. Q grows), the effort exerted in the foil pitching at the extremes of 
the sinusoidal motion grows. For that reason the efficiency slightly decreases, as 
indicated in figure 3. One possible way to overcome this loss is to change the pitching 
axis, as pointed out by Lighthill (1970) and Chopra (1974); see also figure 5 (a) .  

Most of the studies (Scherer 1968; Chopra 1974, 1976) dealing with oscillatory 
propulsion assume a phase difference of &r between the heaving and pitching motions. 
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FIGURE 5. The influence of the location of the pitching axis on (a) the'efficiency 
and ( b )  the thrust coefficient. UJc = 10 s-l, H / c  = 2, = 5", p = in. 
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FIGURE 6. The influence of flexibility on the instantaneous lift of a propulsor foil. 
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FICURE 7.  Variation of moments and forces during periodic motion of a flexible foil. -, 
E/T,ca = 00;  -- , E/Trc2 = 100; - - -, E/T$ = 50. UJc = 10 a-l, H / c  = 3, uo = 5", 
R = 7 l ,  fp = &l. 

Figure 4 shows that around ~ 1 =  90" both the thrust and the efficiency are very high, 
as found experimentally by Scherer (1968). 

The effect of the location xp of the pitching axis on the efficiency and the thrust 
coefficient is indicated in figure 5 .  The gain in efficiency as xp moves in the + x direction 
is mainly due to the decrease in the work required to turn the foil when the heave 
amplitude is near its maximum. This figure shows quantitatively the point made 
by Lighthill (1970), that the pitching axis should be located in the rear quarter of the 
foil. Investigation of the influence of varying the average angle of attack a1 (over the 
range - 15" < u1 < 15") showed, in the present case of a two-dimensional foil, that a1 
has no significant effect on the thrust and efficiency. 
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FIGURE 8. The influence of flexibility on (a) the efficiency and (b )  the thrust coefficient. 
UJc = lOs-l, H / c  = 3, a = 5", q = t l~ .  

The influence of chordwise flexibility on large amplitude oscillatory propulsion 
The main effect of chordwise flexibility on oscillatory propulsion is demonstrated in 
figure 6. The fin chord is distorted owing to the hydrodynamic pressures, and the 
overall instantaneous lift decreases. On the other hand, the orientation of the result- 
ant lift is nearer the direction of advance, therefore a higher efficiency can be 
expected. In the results presented here a uniform chordwise flexibility distribution 
(E(€J = constant) and a masslesst thin foil are assumed. However, the method derived 
in the present study can include chordwise variations in flexibility and a mass distri- 
bution. 

The periodic variation of the forces during the foil motion is represented in figure 7, 
which shows the variation of the forces and moments on the foil during a typical cycle 
for various values of the flexibility parameter E/T,c2. This parameter describes the 

t The frequency of the motion here is very low relative to the mechanical resonance of the 
propulsor, 80 that its performance can be predicted by assuming a massless plate. 
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relative distortion of the profile shape during a specific motion, T, being the average 
thrust of a rigid propulsor of chord c performing the same periodic motion. The full 
line represents the case of a rigid foil while the dashed lines give the results for flexible 
foils. In  general, chordwise flexibility does not change the variation ofthe forces within 
a period, but reduces theirmagnitudes. The above behaviour of the forces and moments 
is very similar to Scherer's (1968) experimental results, which were obtained with a 
propulsion fin of aspect ratio 3. 

The influence of chordwise flexibility on the propulsive efficiency and thrust is seen 
in figure 8. As stated before, slight flexibility can lead to  a moderate gain in efficiency 
with a loss in thrust that is still tolerable. This phenomenon was observed qualitatively 
by Picken & Crowe (1974), who compared the performance efficiency of various swim- 
fins. For very flexible propulsors the eficiency is even higher, but the thrust is reduced 
below practical levels. 
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